1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222 | #include <algorithm>
#include <cassert>
#include <cstdio>
#include <tuple>
#include <utility>
#include <vector>
using uint = unsigned;
using ull = unsigned long long;
constexpr uint MOD = 998244353;
constexpr uint PowMod(uint a, ull e) {
for (uint res = 1;; a = (ull)a * a % MOD) {
if (e & 1) res = (ull)res * a % MOD;
if ((e /= 2) == 0) return res;
}
}
constexpr uint InvMod(uint a) { return PowMod(a, MOD - 2); }
constexpr uint QUAD_NONRESIDUE = 3;
constexpr int LOG2_ORD = 23; // __builtin_ctz(MOD - 1)
constexpr uint ZETA = PowMod(QUAD_NONRESIDUE, (MOD - 1) >> LOG2_ORD);
constexpr uint INV_ZETA = InvMod(ZETA);
// 返回做 n 长 FFT 所需的单位根数组,长度为一半
std::pair<std::vector<uint>, std::vector<uint>> GetFFTRoot(int n) {
assert((n & (n - 1)) == 0);
if (n / 2 == 0) return {};
std::vector<uint> root(n / 2), inv_root(n / 2);
root[0] = inv_root[0] = 1;
for (int i = 0; (1 << i) < n / 2; ++i)
root[1 << i] = PowMod(ZETA, 1LL << (LOG2_ORD - i - 2)),
inv_root[1 << i] = PowMod(INV_ZETA, 1LL << (LOG2_ORD - i - 2));
for (int i = 1; i < n / 2; ++i)
root[i] = (ull)root[i - (i & (i - 1))] * root[i & (i - 1)] % MOD,
inv_root[i] =
(ull)inv_root[i - (i & (i - 1))] * inv_root[i & (i - 1)] % MOD;
return {root, inv_root};
}
void Butterfly(int n, uint a[], const uint root[]) {
assert((n & (n - 1)) == 0);
for (int i = n; i >= 2; i /= 2)
for (int j = 0; j < n; j += i)
for (int k = j; k < j + i / 2; ++k) {
const uint u = a[k];
a[k + i / 2] = (ull)a[k + i / 2] * root[j / i] % MOD;
if ((a[k] += a[k + i / 2]) >= MOD) a[k] -= MOD;
if ((a[k + i / 2] = u + MOD - a[k + i / 2]) >= MOD) a[k + i / 2] -= MOD;
}
}
void InvButterfly(int n, uint a[], const uint root[]) {
assert((n & (n - 1)) == 0);
for (int i = 2; i <= n; i *= 2)
for (int j = 0; j < n; j += i)
for (int k = j; k < j + i / 2; ++k) {
const uint u = a[k];
if ((a[k] += a[k + i / 2]) >= MOD) a[k] -= MOD;
a[k + i / 2] = (ull)(u + MOD - a[k + i / 2]) * root[j / i] % MOD;
}
}
void FFT(int n, uint a[], const uint root[]) { Butterfly(n, a, root); }
void InvFFT(int n, uint a[], const uint root[]) {
InvButterfly(n, a, root);
const uint inv_n = InvMod(n);
for (int i = 0; i < n; ++i) a[i] = (ull)a[i] * inv_n % MOD;
}
// 形式幂级数复合,求出 f(g) mod x^n 要求 g(0) = 0
std::vector<uint> FPSComposition(std::vector<uint> f, std::vector<uint> g,
int n) {
assert(g.empty() || g[0] == 0);
int len = 1;
while (len < n) len *= 2;
std::vector<uint> root, inv_root;
std::tie(root, inv_root) = GetFFTRoot(len * 4);
// [y^(-1)] (f(y) / (-g(x) + y)) mod x^n in R[x]((y^(-1)))
auto KinoshitaLi = [&](auto &&KinoshitaLi, const std::vector<uint> &P,
const std::vector<uint> &Q, int d, int n) {
assert((int)P.size() == d * n);
assert((int)Q.size() == d * n);
if (n == 1) return P;
std::vector<uint> dftQ(d * n * 4);
for (int i = 0; i < d; ++i)
for (int j = 0; j < n; ++j) dftQ[i * n * 2 + j] = Q[i * n + j];
dftQ[d * n * 2] = 1;
FFT(d * n * 4, dftQ.data(), root.data());
std::vector<uint> V(d * n * 2);
for (int i = 0; i < d * n * 4; i += 2)
V[i / 2] = (ull)dftQ[i] * dftQ[i + 1] % MOD;
InvFFT(d * n * 2, V.data(), inv_root.data());
if ((V[0] += MOD - 1) >= MOD) V[0] -= MOD;
for (int i = 1; i < d * 2; ++i)
for (int j = 0; j < n / 2; ++j) V[i * (n / 2) + j] = V[i * n + j];
V.resize(d * n);
const std::vector<uint> T = KinoshitaLi(KinoshitaLi, P, V, d * 2, n / 2);
std::vector<uint> dftT(d * n * 2);
for (int i = 0; i < d * 2; ++i)
for (int j = 0; j < n / 2; ++j) dftT[i * n + j] = T[i * (n / 2) + j];
FFT(d * n * 2, dftT.data(), root.data());
for (int i = 0; i < d * n * 4; i += 2) {
const uint u = dftQ[i];
dftQ[i] = (ull)dftT[i / 2] * dftQ[i + 1] % MOD;
dftQ[i + 1] = (ull)dftT[i / 2] * u % MOD;
}
InvFFT(d * n * 4, dftQ.data(), inv_root.data());
for (int i = 0; i < d; ++i)
for (int j = 0; j < n; ++j) dftQ[i * n + j] = dftQ[(i + d) * (n * 2) + j];
dftQ.resize(d * n);
return dftQ;
};
f.resize(len);
g.resize(len);
for (int i = 0; i < len; ++i) g[i] = (g[i] != 0 ? MOD - g[i] : 0);
std::vector<uint> res = KinoshitaLi(KinoshitaLi, f, g, 1, len);
res.resize(n);
return res;
}
// Power Projection: [x^(n-1)] (fg^i) for i=0,..,n-1 要求 g(0) = 0
std::vector<uint> PowerProjection(std::vector<uint> f, std::vector<uint> g,
int n) {
assert(g.empty() || g[0] == 0);
int len = 1;
while (len < n) len *= 2;
std::vector<uint> root, inv_root;
std::tie(root, inv_root) = GetFFTRoot(len * 4);
// [x^(n-1)] (f(x) / (-g(x) + y)) in R[x]((y^(-1)))
auto KinoshitaLi = [&](auto &&KinoshitaLi, std::vector<uint> P,
std::vector<uint> Q, int d,
int n) -> std::vector<uint> {
assert((int)P.size() == d * n);
assert((int)Q.size() == d * n);
if (n == 1) return P;
std::vector<uint> dftQ(d * n * 4), dftP(d * n * 4);
for (int i = 0; i < d; ++i)
for (int j = 0; j < n; ++j)
dftP[i * n * 2 + j] = P[i * n + j], dftQ[i * n * 2 + j] = Q[i * n + j];
dftQ[d * n * 2] = 1;
FFT(d * n * 4, dftP.data(), root.data());
FFT(d * n * 4, dftQ.data(), root.data());
P.resize(d * n * 2);
Q.resize(d * n * 2);
for (int i = 0; i < d * n * 4; i += 2) {
const uint u = (ull)dftP[i] * dftQ[i + 1] % MOD;
const uint v = (ull)dftP[i + 1] * dftQ[i] % MOD;
P[i / 2] = (ull)(u + MOD - v) * inv_root[i / 2] % MOD;
if (P[i / 2] & 1) P[i / 2] += MOD;
P[i / 2] /= 2;
Q[i / 2] = (ull)dftQ[i] * dftQ[i + 1] % MOD;
}
InvFFT(d * n * 2, P.data(), inv_root.data());
InvFFT(d * n * 2, Q.data(), inv_root.data());
if ((Q[0] += MOD - 1) >= MOD) Q[0] -= MOD;
for (int i = 1; i < d * 2; ++i)
for (int j = 0; j < n / 2; ++j)
P[i * (n / 2) + j] = P[i * n + j], Q[i * (n / 2) + j] = Q[i * n + j];
P.resize(d * n);
Q.resize(d * n);
return KinoshitaLi(KinoshitaLi, P, Q, d * 2, n / 2);
};
f.insert(f.begin(), len - n, 0);
f.resize(len);
g.resize(len);
for (int i = 0; i < len; ++i) g[i] = (g[i] != 0 ? MOD - g[i] : 0);
std::vector<uint> res = KinoshitaLi(KinoshitaLi, f, g, 1, len);
std::reverse(res.begin(), res.end());
res.resize(n);
return res;
}
// 形式幂级数幂函数,计算 g^e mod x^n 要求 g(0) = 1
std::vector<uint> FPSPow1(std::vector<uint> g, uint e, int n) {
assert(!g.empty() && g[0] == 1);
if (n == 1) return std::vector<uint>{1u};
std::vector<uint> inv(n), f(n);
inv[1] = f[0] = 1;
for (int i = 2; i < n; ++i)
inv[i] = (ull)(MOD - MOD / i) * inv[MOD % i] % MOD;
for (int i = 1; i < n; ++i)
f[i] = (ull)f[i - 1] * (e + MOD + 1 - i) % MOD * inv[i] % MOD;
g[0] = 0;
return FPSComposition(f, g, n);
}
// 形式幂级数复合逆
// 计算 g mod x^n 满足 g(f) = f(g) = x 要求 g(0) = 0 且 g'(0) ≠ 0
std::vector<uint> FPSReversion(std::vector<uint> f, int n) {
assert(f.size() >= 2 && f[0] == 0 && f[1] != 0);
if (n == 1) return std::vector<uint>{0u};
f.resize(n);
const uint invf1 = InvMod(f[1]);
uint invf1p = 1;
for (int i = 0; i < n; ++i)
f[i] = (ull)f[i] * invf1p % MOD, invf1p = (ull)invf1p * invf1 % MOD;
std::vector<uint> inv(n);
inv[1] = 1;
for (int i = 2; i < n; ++i)
inv[i] = (ull)(MOD - MOD / i) * inv[MOD % i] % MOD;
std::vector<uint> proj = PowerProjection(std::vector<uint>{1u}, f, n);
for (int i = 1; i < n; ++i)
proj[i] = (ull)proj[i] * (n - 1) % MOD * inv[i] % MOD;
std::reverse(proj.begin(), proj.end());
std::vector<uint> res = FPSPow1(proj, InvMod(MOD + 1 - n), n - 1);
for (int i = 0; i < n - 1; ++i) res[i] = (ull)res[i] * invf1 % MOD;
res.insert(res.begin(), 0);
return res;
}
int main() {
int n;
std::scanf("%d", &n);
std::vector<uint> f(n);
for (int i = 0; i < n; ++i) std::scanf("%u", &f[i]);
const std::vector<uint> res = FPSReversion(f, n);
for (int i = 0; i < n; ++i) std::printf("%u%c", res[i], " \n"[i + 1 == n]);
return 0;
}
|