跳转至

红黑树

红黑树是一种自平衡的二叉搜索树。每个节点额外存储了一个 color 字段 ("RED" or "BLACK"),用于确保树在插入和删除时保持平衡。

性质

一棵合法的红黑树必须遵循以下四条性质:

  1. 节点为红色或黑色
  2. NIL 节点(空叶子节点)为黑色
  3. 红色节点的子节点为黑色
  4. 从根节点到 NIL 节点的每条路径上的黑色节点数量相同

下图为一棵合法的红黑树:

rbtree-example

注:部分资料中还加入了第五条性质,即根节点必须为黑色,这条性质要求完成插入操作后若根节点为红色则将其染黑,但由于将根节点染黑的操作也可以延迟至删除操作时进行,因此,该条性质并非必须满足。(在本文给出的代码实现中就没有选择满足该性质)。为严谨起见,这里同时引用维基百科原文进行说明:

Some authors, e.g. Cormen & al.,[18] claim "the root is black" as fifth requirement; but not Mehlhorn & Sanders[17] or Sedgewick & Wayne.[16]: 432–447  Since the root can always be changed from red to black, this rule has little effect on analysis. This article also omits it, because it slightly disturbs the recursive algorithms and proofs.

结构

红黑树类的定义

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
template <typename Key, typename Value, typename Compare = std::less<Key>>
class RBTreeMap {
  // 排序函数
  Compare compare = Compare();

  // 节点结构体
  struct Node {
    ...
  };

  // 根节点指针
  Node* root = nullptr;
  // 记录红黑树中当前的节点个数
  size_t count = 0;
}

节点维护的信息

IdentifierTypeDescription
leftNode*左子节点指针
rightNode*右子节点指针
parentNode*父节点指针
colorenum { BLACK, RED }颜色枚举
keyKey节点键值,具有唯一性和可排序性
valueValue节点内储存的值

注:由于本文提供的代码示例中使用 std::share_ptr 进行内存管理,对此不熟悉的读者可以将下文中所有的 NodePtrConstNodePtr 理解为裸指针 Node*。但在实现删除操作时若使用 Node* 作为节点引用需注意应手动释放内存以避免内存泄漏,该操作在使用 std::shared_ptr 作为节点引用的示例代码中并未体现。

过程

注:由于红黑树是由 B 树衍生而来(发明时的最初的名字 symmetric binary B-tree 足以证明这点),并非直接由平衡二叉树外加限制条件推导而来,插入操作的后续维护和删除操作的后续维护中部分对操作的解释作用仅是帮助理解,并不能将其作为该操作的原理推导和证明。

旋转操作

旋转操作是多数平衡树能够维持平衡的关键,它能在不改变一棵合法 BST 中序遍历结果的情况下改变局部节点的深度。

rbtree-rotations

如上图,从左图到右图的过程被称为左旋,左旋操作会使得 子树上结点的深度均减 1,使 子树上结点的深度均加 1,而 子树上节点的深度则不变。从右图到左图的过程被称为右旋,右旋是左旋的镜像操作。

这里给出红黑树中节点的左旋操作的示例代码:

实现
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
void rotateLeft(ConstNodePtr node) {
  // clang-format off
  //     |                       |
  //     N                       S
  //    / \     l-rotate(N)     / \
  //   L   S    ==========>    N   R
  //      / \                 / \
  //     M   R               L   M
  assert(node != nullptr && node->right != nullptr);
  // clang-format on
  NodePtr parent = node->parent;
  Direction direction = node->direction();

  NodePtr successor = node->right;
  node->right = successor->left;
  successor->left = node;

  // 以下的操作用于维护各个节点的`parent`指针
  // `Direction`的定义以及`maintainRelationship`
  // 的实现请参照文章末尾的完整示例代码
  maintainRelationship(node);
  maintainRelationship(successor);

  switch (direction) {
    case Direction::ROOT:
      this->root = successor;
      break;
    case Direction::LEFT:
      parent->left = successor;
      break;
    case Direction::RIGHT:
      parent->right = successor;
      break;
  }

  successor->parent = parent;
}

注:代码中的 successor 并非平衡树中的后继节点,而是表示取代原本节点的新节点,由于在图示中 replacement 的简称 R 会与右子节点的简称 R 冲突,因此此处使用 successor 避免歧义。

插入操作

红黑树的插入操作与普通的 BST 类似,对于红黑树来说,新插入的节点初始为红色,完成插入后需根据插入节点及相关节点的状态进行修正以满足上文提到的四条性质。

插入后的平衡维护

Case 1

该树原先为空,插入第一个节点后不需要进行修正。

Case 2

当前的节点的父节点为黑色且为根节点,这时性质已经满足,不需要进行修正。

Case 3

当前节点 N 的父节点 P 是为根节点且为红色,将其染为黑色即可,此时性质也已满足,不需要进一步修正。

实现
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
// clang-format off
// Case 3: Parent is root and is RED
//   Paint parent to BLACK.
//    <P>         [P]
//     |   ====>   |
//    <N>         <N>
//   p.s.
//    `<X>` is a RED node;
//    `[X]` is a BLACK node (or NIL);
//    `{X}` is either a RED node or a BLACK node;
// clang-format on
assert(node->parent->isRed());
node->parent->color = Node::BLACK;
return;

Case 4

当前节点 N 的父节点 P 和叔节点 U 均为红色,此时 P 包含了一个红色子节点,违反了红黑树的性质,需要进行重新染色。由于在当前节点 N 之前该树是一棵合法的红黑树,根据性质 4 可以确定 N 的祖父节点 G 一定是黑色,这时只要后续操作可以保证以 G 为根节点的子树在不违反性质 4 的情况下再递归维护祖父节点 G 以保证性质 3 即可。

因此,这种情况的维护需要:

  1. 将 P,U 节点染黑,将 G 节点染红(可以保证每条路径上黑色节点个数不发生改变)。
  2. 递归维护 G 节点(因为不确定 G 的父节点的状态,递归维护可以确保性质 3 成立)。

rbtree-insert-case4

实现
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
// clang-format off
// Case 4: Both parent and uncle are RED
//   Paint parent and uncle to BLACK;
//   Paint grandparent to RED.
//        [G]             <G>
//        / \             / \
//      <P> <U>  ====>  [P] [U]
//      /               /
//    <N>             <N>
// clang-format on
assert(node->parent->isRed());
node->parent->color = Node::BLACK;
node->uncle()->color = Node::BLACK;
node->grandParent()->color = Node::RED;
maintainAfterInsert(node->grandParent());
return;

Case 5

当前节点 N 与父节点 P 的方向相反(即 N 节点为右子节点且父节点为左子节点,或 N 节点为左子节点且父节点为右子节点。类似 AVL 树中 LR 和 RL 的情况)。根据性质 4,若 N 为新插入节点,U 则为 NIL 黑色节点,否则为普通黑色节点。

该种情况无法直接进行维护,需要通过旋转操作将子树结构调整为 Case 6 的初始状态并进入 Case 6 进行后续维护。

rbtree-insert-case5

实现
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
// clang-format off
// Case 5: Current node is the opposite direction as parent
//   Step 1. If node is a LEFT child, perform l-rotate to parent;
//           If node is a RIGHT child, perform r-rotate to parent.
//   Step 2. Goto Case 6.
//      [G]                 [G]
//      / \    rotate(P)    / \
//    <P> [U]  ========>  <N> [U]
//      \                 /
//      <N>             <P>
// clang-format on

// Step 1: Rotation
NodePtr parent = node->parent;
if (node->direction() == Direction::LEFT) {
  rotateRight(node->parent);
} else /* node->direction() == Direction::RIGHT */ {
  rotateLeft(node->parent);
}
node = parent;
// Step 2: vvv

Case 6

当前节点 N 与父节点 P 的方向相同(即 N 节点为右子节点且父节点为右子节点,或 N 节点为左子节点且父节点为右子节点。类似 AVL 树中 LL 和 RR 的情况)。根据性质 4,若 N 为新插入节点,U 则为 NIL 黑色节点,否则为普通黑色节点。

在这种情况下,若想在不改变结构的情况下使得子树满足性质 3,则需将 G 染成红色,将 P 染成黑色。但若这样维护的话则性质 4 被打破,且无法保证在 G 节点的父节点上性质 3 是否成立。而选择通过旋转改变子树结构后再进行重新染色即可同时满足性质 3 和 4。

因此,这种情况的维护需要:

  1. 若 N 为左子节点则左旋祖父节点 G,否则右旋祖父节点 G.(该操作使得旋转过后 P - N 这条路径上的黑色节点个数比 P - G - U 这条路径上少 1,暂时打破性质 4)。
  2. 重新染色,将 P 染黑,将 G 染红,同时满足了性质 3 和 4。

rbtree-insert-case6

实现
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
// clang-format off
// Case 6: Current node is the same direction as parent
//   Step 1. If node is a LEFT child, perform r-rotate to grandparent;
//           If node is a RIGHT child, perform l-rotate to grandparent.
//   Step 2. Paint parent (before rotate) to BLACK;
//           Paint grandparent (before rotate) to RED.
//        [G]                 <P>               [P]
//        / \    rotate(G)    / \    repaint    / \
//      <P> [U]  ========>  <N> [G]  ======>  <N> <G>
//      /                         \                 \
//    <N>                         [U]               [U]
// clang-format on
assert(node->grandParent() != nullptr);

// Step 1
if (node->parent->direction() == Direction::LEFT) {
  rotateRight(node->grandParent());
} else {
  rotateLeft(node->grandParent());
}

// Step 2
node->parent->color = Node::BLACK;
node->sibling()->color = Node::RED;

return;

删除操作

红黑树的删除操作情况繁多,较为复杂。这部分内容主要通过代码示例来进行讲解。大多数红黑树的实现选择将节点的删除以及删除之后的维护写在同一个函数或逻辑块中(例如 Wikipedia 给出的 代码示例linux 内核中的 rbtree 以及 GNU libstdc++ 中的 std::_Rb_tree 都使用了类似的写法)。笔者则认为这种实现方式并不利于对算法本身的理解,因此,本文给出的示例代码参考了 OpenJDK 中 TreeMap 的实现,将删除操作本身与删除后的平衡维护操作解耦成两个独立的函数,并对这两部分的逻辑单独进行分析。

Case 0

若待删除节点为根节点的话,直接删除即可,这里不将其算作删除操作的 3 种基本情况中。

Case 1

若待删除节点 N 既有左子节点又有右子节点,则需找到它的前驱或后继节点进行替换(仅替换数据,不改变节点颜色和内部引用关系),则后续操作中只需要将后继节点删除即可。这部分操作与普通 BST 完全相同,在此不再过多赘述。

注:这里选择的前驱或后继节点保证不会是一个既有非 NIL 左子节点又有非 NIL 右子节点的节点。这里拿后继节点进行简单说明:若该节点包含非空左子节点,则该节点并非是 N 节点右子树上键值最小的节点,与后继节点的性质矛盾,因此后继节点的左子节点必须为 NIL。

实现
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// clang-format off
// Case 1: If the node is strictly internal
//   Step 1. Find the successor S with the smallest key
//           and its parent P on the right subtree.
//   Step 2. Swap the data (key and value) of S and N,
//           S is the node that will be deleted in place of N.
//   Step 3. N = S, goto Case 2, 3
//     |                    |
//     N                    S
//    / \                  / \
//   L  ..   swap(N, S)   L  ..
//       |   =========>       |
//       P                    P
//      / \                  / \
//     S  ..                N  ..
// clang-format on

// Step 1
NodePtr successor = node->right;
NodePtr parent = node;
while (successor->left != nullptr) {
  parent = successor;
  successor = parent->left;
}
// Step 2
swapNode(node, successor);
maintainRelationship(parent);
// Step 3: vvv

Case 2

待删除节点为叶子节点,若该节点为红色,直接删除即可,删除后仍能保证红黑树的 4 条性质。若为黑色,删除后性质 4 被打破,需要重新进行维护。

注:由于维护操作不会改变待删除节点的任何结构和数据,因此此处的代码示例中为了实现方便起见选择先进行维护,再解引用相关节点。

实现
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
// clang-format off
// Case 2: Current node is a leaf
//   Step 1. Unlink and remove it.
//   Step 2. If N is BLACK, maintain N;
//           If N is RED, do nothing.
// clang-format on
// The maintain operation won't change the node itself,
//  so we can perform maintain operation before unlink the node.
if (node->isBlack()) {
  maintainAfterRemove(node);
}
if (node->direction() == Direction::LEFT) {
  node->parent->left = nullptr;
} else /* node->direction() == Direction::RIGHT */ {
  node->parent->right = nullptr;
}

Case 3

待删除节点有且仅有一个非 NIL 子节点,若待删除节点为红色,直接使用其子节点 S 替换即可;若为黑色,则直接使用子节点 S 替代会打破性质 4,需要在使用 S 替代后判断 S 的颜色,若为红色,则将其染黑后即可满足性质 4,否则需要进行维护才可以满足性质 4。

实现
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
// Case 3: Current node has a single left or right child
//   Step 1. Replace N with its child
//   Step 2. If N is BLACK, maintain N
NodePtr parent = node->parent;
NodePtr replacement = (node->left != nullptr ? node->left : node->right);

switch (node->direction()) {
  case Direction::ROOT:
    this->root = replacement;
    break;
  case Direction::LEFT:
    parent->left = replacement;
    break;
  case Direction::RIGHT:
    parent->right = replacement;
    break;
}

if (!node->isRoot()) {
  replacement->parent = parent;
}

if (node->isBlack()) {
  if (replacement->isRed()) {
    replacement->color = Node::BLACK;
  } else {
    maintainAfterRemove(replacement);
  }
}

删除后的平衡维护

Case 1

兄弟节点 (sibling node) S 为红色,则父节点 P 和侄节点 (nephew node) C 和 D 必为黑色(否则违反性质 3)。与插入后维护操作的 Case 5 类似,这种情况下无法通过直接的旋转或染色操作使其满足所有性质,因此通过前置操作优先保证部分结构满足性质,再进行后续维护即可。

这种情况的维护需要:

  1. 若待删除节点 N 为左子节点,左旋 P; 若为右子节点,右旋 P。
  2. 将 S 染黑,P 染红(保证 S 节点的父节点满足性质 4)。
  3. 此时只需根据结构对以当前 P 节点为根的子树进行维护即可(无需再考虑旋转染色后的 S 和 D 节点)。

rbtree-remove-case1

实现
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// clang-format off

// Case 1: Sibling is RED, parent and nephews must be BLACK
//   Step 1. If N is a left child, left rotate P;
//           If N is a right child, right rotate P.
//   Step 2. Paint S to BLACK, P to RED
//   Step 3. Goto Case 2, 3, 4, 5
//      [P]                   <S>               [S]
//      / \    l-rotate(P)    / \    repaint    / \
//    [N] <S>  ==========>  [P] [D]  ======>  <P> [D]
//        / \               / \               / \
//      [C] [D]           [N] [C]           [N] [C]
// clang-format on
ConstNodePtr parent = node->parent;
assert(parent != nullptr && parent->isBlack());
assert(sibling->left != nullptr && sibling->left->isBlack());
assert(sibling->right != nullptr && sibling->right->isBlack());
// Step 1
rotateSameDirection(node->parent, direction);
// Step 2
sibling->color = Node::BLACK;
parent->color = Node::RED;
// Update sibling after rotation
sibling = node->sibling();
// Step 3: vvv

Case 2

兄弟节点 S 和侄节点 C, D 均为黑色,父节点 P 为红色。此时只需将 S 染红,将 P 染黑即可满足性质 3 和 4。

rbtree-remove-case2

实现
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
// clang-format off
// Case 2: Sibling and nephews are BLACK, parent is RED
//   Swap the color of P and S
//      <P>             [P]
//      / \             / \
//    [N] [S]  ====>  [N] <S>
//        / \             / \
//      [C] [D]         [C] [D]
// clang-format on
sibling->color = Node::RED;
node->parent->color = Node::BLACK;
return;

Case 3

兄弟节点 S,父节点 P 以及侄节点 C, D 均为黑色。

此时也无法通过一步操作同时满足性质 3 和 4,因此选择将 S 染红,优先满足局部性质 4 的成立,再递归维护 P 节点根据上部结构进行后续维护。

rbtree-remove-case3

实现
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
// clang-format off
// Case 3: Sibling, parent and nephews are all black
//   Step 1. Paint S to RED
//   Step 2. Recursively maintain P
//      [P]             [P]
//      / \             / \
//    [N] [S]  ====>  [N] <S>
//        / \             / \
//      [C] [D]         [C] [D]
// clang-format on
sibling->color = Node::RED;
maintainAfterRemove(node->parent);
return;

Case 4

兄弟节点是黑色,且与 N 同向的侄节点 C(由于没有固定中文翻译,下文还是统一将其称作 close nephew)为红色,与 N 反向的侄节点 D(同理,下文称作 distant nephew)为黑色,父节点既可为红色又可为黑色。

此时同样无法通过一步操作使其满足性质,因此优先选择将其转变为 Case 5 的状态利用后续 Case 5 的维护过程进行修正。

该过程分为三步:

  1. 若 N 为左子节点,右旋 P,否则左旋 P。
  2. 将节点 C 染红,将节点 S 染黑。
  3. 此时已满足 Case 5 的条件,进入 Case 5 完成后续维护。

rbtree-remove-case4

实现
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
// clang-format off
// Case 4: Sibling is BLACK, close nephew is RED,
//         distant nephew is BLACK
//   Step 1. If N is a left child, right rotate P;
//           If N is a right child, left rotate P.
//   Step 2. Swap the color of close nephew and sibling
//   Step 3. Goto case 5
//                            {P}                {P}
//      {P}                   / \                / \
//      / \    r-rotate(S)  [N] <C>   repaint  [N] [C]
//    [N] [S]  ==========>        \   ======>        \
//        / \                     [S]                <S>
//      <C> [D]                     \                  \
//                                  [D]                [D]
// clang-format on

// Step 1
rotateOppositeDirection(sibling, direction);
// Step 2
closeNephew->color = Node::BLACK;
sibling->color = Node::RED;
// Update sibling and nephews after rotation
sibling = node->sibling();
closeNephew = direction == Direction::LEFT ? sibling->left : sibling->right;
distantNephew = direction == Direction::LEFT ? sibling->right : sibling->left;
// Step 3: vvv

Case 5

兄弟节点是黑色,且 close nephew 节点 C 为红色,distant nephew 节点 D 为黑色,父节点既可为红色又可为黑色。此时性质 4 无法满足,通过旋转操作使得黑色节点 S 变为该子树的根节点再进行染色即可满足性质 4。具体步骤如下:

  1. 若 N 为左子节点,左旋 P,反之右旋 P。
  2. 交换父节点 P 和兄弟节点 S 的颜色,此时性质 3 可能被打破。
  3. 将 distant nephew 节点 D 染黑,同时保证了性质 3 和 4。

rbtree-remove-case5

实现
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// clang-format off
// Case 5: Sibling is BLACK, close nephew is BLACK,
//         distant nephew is RED
//   Step 1. If N is a left child, left rotate P;
//           If N is a right child, right rotate P.
//   Step 2. Swap the color of parent and sibling.
//   Step 3. Paint distant nephew D to BLACK.
//      {P}                   [S]               {S}
//      / \    l-rotate(P)    / \    repaint    / \
//    [N] [S]  ==========>  {P} <D>  ======>  [P] [D]
//        / \               / \               / \
//      [C] <D>           [N] [C]           [N] [C]
// clang-format on
assert(closeNephew == nullptr || closeNephew->isBlack());
assert(distantNephew->isRed());
// Step 1
rotateSameDirection(node->parent, direction);
// Step 2
sibling->color = node->parent->color;
node->parent->color = Node::BLACK;
// Step 3
distantNephew->color = Node::BLACK;
return;

红黑树与 4 阶 B 树(2-3-4 树)的关系

rbtree-btree-analogy

红黑树是由德国计算机科学家 Rudolf Bayer 在 1972 年从 B 树上改进过来的,红黑树在当时被称作 "symmetric binary B-tree",因此与 B 树有众多相似之处。比如红黑树与 4 阶 B 树每个簇(对于红黑树来说一个簇是一个非 NIL 黑色节点和它的两个子节点,对 B 树来说一个簇就是一个节点)的最大容量为 3 且最小填充量均为 。因此我们甚至可以说红黑树与 4 阶 B 树(2-3-4 树)在结构上是等价的。

对这方面内容感兴趣的可以观看 从 2-3-4 树的角度学习理解红黑树(视频) 进行学习。

虽然二者在结构上是等价的,但这并不意味这二者可以互相取代或者在所有情况下都可以互换使用。最显然的例子就是数据库的索引,由于 B 树不存在旋转操作,因此其所有节点的存储位置都是可以被确定的,这种结构对于不区分堆栈的磁盘来说显然比红黑树动态分配节点存储空间要更加合适。另外一点就是由于 B 树/B+ 树内储存的数据都是连续的,对于有着大量连续查询需求的数据库来说更加友好。而对于小数据量随机插入/查询的需求,由于 B 树的每个节点都存储了若干条记录,因此发生 cache miss 时就需要将整个节点的所有数据读入缓存中,在这些情况下 BST(红黑树,AVL,Splay 等)则反而会优与 B 树/B+ 树。对这方面内容感兴趣的读者可以去阅读一下 为什么 rust 中的 Map 使用的是 B 树而不是像其他主流语言一样使用红黑树

红黑树在实际工程项目中的使用

由于红黑树是目前主流工业界综合效率最高的内存型平衡树,其在实际的工程项目中有着广泛的使用,这里列举几个实际的使用案例并给出相应的源码链接,以便读者进行对比学习。

Linux

源码:

Linux 中的红黑树所有操作均使用循环迭代进行实现,保证效率的同时又增加了大量的注释来保证代码可读性,十分建议读者阅读学习。Linux 内核中的红黑树使用非常广泛,这里仅列举几个经典案例。

CFS 非实时任务调度

Linux 的稳定内核版本在 2.6.24 之后,使用了新的调度程序 CFS,所有非实时可运行进程都以虚拟运行时间为键值用一棵红黑树进行维护,以完成更公平高效地调度所有任务。CFS 弃用 active/expired 数组和动态计算优先级,不再跟踪任务的睡眠时间和区别是否交互任务,而是在调度中采用基于时间计算键值的红黑树来选取下一个任务,根据所有任务占用 CPU 时间的状态来确定调度任务优先级。

epoll

epoll 全称 event poll,是 Linux 内核实现 IO 多路复用 (IO multiplexing) 的一个实现,是原先 poll/select 的改进版。Linux 中 epoll 的实现选择使用红黑树来储存文件描述符。

Nginx

源码:

nginx 中的用户态定时器是通过红黑树实现的。在 nginx 中,所有 timer 节点都由一棵红黑树进行维护,在 worker 进程的每一次循环中都会调用 ngx_process_events_and_timers 函数,在该函数中就会调用处理定时器的函数 ngx_event_expire_timers,每次该函数都不断的从红黑树中取出时间值最小的,查看他们是否已经超时,然后执行他们的函数,直到取出的节点的时间没有超时为止。

关于 nginx 中红黑树的源码分析公开资源很多,读者可以自行查找学习。

STL

源码:

大多数 STL 中的 std::mapstd::set 的内部数据结构就是一棵红黑树(例如上面提到的这些)。不过值得注意的是,这些红黑树(包括可能有读者用过的 std::_Rb_tree)都不是 C++ 标准,虽然部分竞赛(例如 NOIP)并未命令禁止这类数据结构,但还是应当注意这类标准库中的非标准实现不应该在工程项目中直接使用。

由于 STL 的特殊性,其中大多数实现的代码可读性都不高,因此并不建议读者使用 STL 学习红黑树。

OpenJDK

源码:

  • java.util.TreeMap\
  • java.util.TreeSet\
  • java.util.HashMap\

    JDK 中的 TreeMapTreeSet 都是使用红黑树作为底层数据结构的。同时在 JDK 1.8 之后 HashMap 内部哈希表中每个表项的链表长度超过 8 时也会自动转变为红黑树以提升查找效率。

    笔者认为,JDK 中的红黑树实现是主流红黑树实现中可读性最高的,本文提供的参考代码很大程度上借鉴了 JDK 中 TreeMap 的实现,因此也建议读者阅读学习 JDK 中 TreeMap 的实现。

    参考代码

    下面的代码是用红黑树实现的 Map,即有序不可重映射:

    完整代码
       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
     544
     545
     546
     547
     548
     549
     550
     551
     552
     553
     554
     555
     556
     557
     558
     559
     560
     561
     562
     563
     564
     565
     566
     567
     568
     569
     570
     571
     572
     573
     574
     575
     576
     577
     578
     579
     580
     581
     582
     583
     584
     585
     586
     587
     588
     589
     590
     591
     592
     593
     594
     595
     596
     597
     598
     599
     600
     601
     602
     603
     604
     605
     606
     607
     608
     609
     610
     611
     612
     613
     614
     615
     616
     617
     618
     619
     620
     621
     622
     623
     624
     625
     626
     627
     628
     629
     630
     631
     632
     633
     634
     635
     636
     637
     638
     639
     640
     641
     642
     643
     644
     645
     646
     647
     648
     649
     650
     651
     652
     653
     654
     655
     656
     657
     658
     659
     660
     661
     662
     663
     664
     665
     666
     667
     668
     669
     670
     671
     672
     673
     674
     675
     676
     677
     678
     679
     680
     681
     682
     683
     684
     685
     686
     687
     688
     689
     690
     691
     692
     693
     694
     695
     696
     697
     698
     699
     700
     701
     702
     703
     704
     705
     706
     707
     708
     709
     710
     711
     712
     713
     714
     715
     716
     717
     718
     719
     720
     721
     722
     723
     724
     725
     726
     727
     728
     729
     730
     731
     732
     733
     734
     735
     736
     737
     738
     739
     740
     741
     742
     743
     744
     745
     746
     747
     748
     749
     750
     751
     752
     753
     754
     755
     756
     757
     758
     759
     760
     761
     762
     763
     764
     765
     766
     767
     768
     769
     770
     771
     772
     773
     774
     775
     776
     777
     778
     779
     780
     781
     782
     783
     784
     785
     786
     787
     788
     789
     790
     791
     792
     793
     794
     795
     796
     797
     798
     799
     800
     801
     802
     803
     804
     805
     806
     807
     808
     809
     810
     811
     812
     813
     814
     815
     816
     817
     818
     819
     820
     821
     822
     823
     824
     825
     826
     827
     828
     829
     830
     831
     832
     833
     834
     835
     836
     837
     838
     839
     840
     841
     842
     843
     844
     845
     846
     847
     848
     849
     850
     851
     852
     853
     854
     855
     856
     857
     858
     859
     860
     861
     862
     863
     864
     865
     866
     867
     868
     869
     870
     871
     872
     873
     874
     875
     876
     877
     878
     879
     880
     881
     882
     883
     884
     885
     886
     887
     888
     889
     890
     891
     892
     893
     894
     895
     896
     897
     898
     899
     900
     901
     902
     903
     904
     905
     906
     907
     908
     909
     910
     911
     912
     913
     914
     915
     916
     917
     918
     919
     920
     921
     922
     923
     924
     925
     926
     927
     928
     929
     930
     931
     932
     933
     934
     935
     936
     937
     938
     939
     940
     941
     942
     943
     944
     945
     946
     947
     948
     949
     950
     951
     952
     953
     954
     955
     956
     957
     958
     959
     960
     961
     962
     963
     964
     965
     966
     967
     968
     969
     970
     971
     972
     973
     974
     975
     976
     977
     978
     979
     980
     981
     982
     983
     984
     985
     986
     987
     988
     989
     990
     991
     992
     993
     994
     995
     996
     997
     998
     999
    1000
    1001
    1002
    1003
    1004
    1005
    1006
    1007
    1008
    1009
    1010
    1011
    1012
    1013
    1014
    1015
    1016
    1017
    1018
    1019
    1020
    1021
    1022
    1023
    1024
    1025
    1026
    1027
    1028
    1029
    1030
    1031
    1032
    1033
    1034
    1035
    1036
    1037
    1038
    1039
    1040
    1041
    1042
    1043
    1044
    1045
    1046
    1047
    1048
    1049
    1050
    1051
    1052
    1053
    1054
    1055
    1056
    1057
    1058
    1059
    1060
    1061
    1062
    1063
    1064
    1065
    1066
    1067
    1068
    1069
    1070
    1071
    1072
    1073
    1074
    1075
    1076
    1077
    1078
    1079
    1080
    1081
    1082
    1083
    1084
    1085
    1086
    1087
    1088
    1089
    1090
    1091
    1092
    1093
    1094
    1095
    1096
    1097
    1098
    1099
    1100
    1101
    1102
    1103
    1104
    1105
    1106
    1107
    1108
    1109
    1110
    1111
    1112
    1113
    1114
    1115
    1116
    1117
    1118
    1119
    1120
    1121
    1122
    1123
    1124
    1125
    1126
    1127
    1128
    1129
    1130
    1131
    1132
    1133
    1134
    1135
    1136
    1137
    1138
    1139
    1140
    1141
    1142
    1143
    1144
    1145
    1146
    1147
    1148
    1149
    1150
    1151
    1152
    1153
    1154
    1155
    1156
    1157
    1158
    1159
    1160
    1161
    1162
    1163
    1164
    1165
    1166
    1167
    1168
    1169
    1170
    1171
    1172
    1173
    1174
    1175
    1176
    1177
    1178
    1179
    1180
    1181
    1182
    1183
    1184
    1185
    1186
    1187
    1188
    /**
     * @file RBTreeMap.hpp
     * @brief An RBTree-based map implementation
     * @details The map is sorted according to the natural ordering of its
     *  keys or by a {@code Compare} function provided; This implementation
     *  provides guaranteed log(n) time cost for the contains, get, insert
     *  and remove operations.
     * @author [r.ivance](https://github.com/RIvance)
     */
    
    #ifndef RBTREE_MAP_HPP
    #define RBTREE_MAP_HPP
    
    #include <cassert>
    #include <cstddef>
    #include <cstdint>
    #include <functional>
    #include <memory>
    #include <stack>
    #include <utility>
    #include <vector>
    
    /**
     * An RBTree-based map implementation
     * https://en.wikipedia.org/wiki/Red–black_tree
     *
     * A red–black tree (RBTree) is a kind of self-balancing binary search tree.
     * Each node stores an extra field representing "color" (RED or BLACK), used
     * to ensure that the tree remains balanced during insertions and deletions.
     *
     * In addition to the requirements imposed on a binary search tree the following
     * must be satisfied by a red–black tree:
     *
     *  1. Every node is either RED or BLACK.
     *  2. All NIL nodes (`nullptr` in this implementation) are considered BLACK.
     *  3. A RED node does not have a RED child.
     *  4. Every path from a given node to any of its descendant NIL nodes goes
     * through the same number of BLACK nodes.
     *
     * @tparam Key the type of keys maintained by this map
     * @tparam Value the type of mapped values
     * @tparam Compare the compare function
     */
    template <typename Key, typename Value, typename Compare = std::less<Key> >
    class RBTreeMap {
     private:
      using USize = size_t;
    
      Compare compare = Compare();
    
     public:
      struct Entry {
        Key key;
        Value value;
    
        bool operator==(const Entry &rhs) const noexcept {
          return this->key == rhs.key && this->value == rhs.value;
        }
    
        bool operator!=(const Entry &rhs) const noexcept {
          return this->key != rhs.key || this->value != rhs.value;
        }
      };
    
     private:
      struct Node {
        using Ptr = std::shared_ptr<Node>;
        using Provider = const std::function<Ptr(void)> &;
        using Consumer = const std::function<void(const Ptr &)> &;
    
        enum { RED, BLACK } color = RED;
    
        enum Direction { LEFT = -1, ROOT = 0, RIGHT = 1 };
    
        Key key;
        Value value{};
    
        Ptr parent = nullptr;
        Ptr left = nullptr;
        Ptr right = nullptr;
    
        explicit Node(Key k) : key(std::move(k)) {}
    
        explicit Node(Key k, Value v) : key(std::move(k)), value(std::move(v)) {}
    
        ~Node() = default;
    
        inline bool isLeaf() const noexcept {
          return this->left == nullptr && this->right == nullptr;
        }
    
        inline bool isRoot() const noexcept { return this->parent == nullptr; }
    
        inline bool isRed() const noexcept { return this->color == RED; }
    
        inline bool isBlack() const noexcept { return this->color == BLACK; }
    
        inline Direction direction() const noexcept {
          if (this->parent != nullptr) {
            if (this == this->parent->left.get()) {
              return Direction::LEFT;
            } else {
              return Direction::RIGHT;
            }
          } else {
            return Direction::ROOT;
          }
        }
    
        inline Ptr &sibling() const noexcept {
          assert(!this->isRoot());
          if (this->direction() == LEFT) {
            return this->parent->right;
          } else {
            return this->parent->left;
          }
        }
    
        inline bool hasSibling() const noexcept {
          return !this->isRoot() && this->sibling() != nullptr;
        }
    
        inline Ptr &uncle() const noexcept {
          assert(this->parent != nullptr);
          return parent->sibling();
        }
    
        inline bool hasUncle() const noexcept {
          return !this->isRoot() && this->parent->hasSibling();
        }
    
        inline Ptr &grandParent() const noexcept {
          assert(this->parent != nullptr);
          return this->parent->parent;
        }
    
        inline bool hasGrandParent() const noexcept {
          return !this->isRoot() && this->parent->parent != nullptr;
        }
    
        inline void release() noexcept {
          // avoid memory leak caused by circular reference
          this->parent = nullptr;
          if (this->left != nullptr) {
            this->left->release();
          }
          if (this->right != nullptr) {
            this->right->release();
          }
        }
    
        inline Entry entry() const { return Entry{key, value}; }
    
        static Ptr from(const Key &k) { return std::make_shared<Node>(Node(k)); }
    
        static Ptr from(const Key &k, const Value &v) {
          return std::make_shared<Node>(Node(k, v));
        }
      };
    
      using NodePtr = typename Node::Ptr;
      using ConstNodePtr = const NodePtr &;
      using Direction = typename Node::Direction;
      using NodeProvider = typename Node::Provider;
      using NodeConsumer = typename Node::Consumer;
    
      NodePtr root = nullptr;
      USize count = 0;
    
      using K = const Key &;
      using V = const Value &;
    
     public:
      using EntryList = std::vector<Entry>;
      using KeyValueConsumer = const std::function<void(K, V)> &;
      using MutKeyValueConsumer = const std::function<void(K, Value &)> &;
      using KeyValueFilter = const std::function<bool(K, V)> &;
    
      class NoSuchMappingException : protected std::exception {
       private:
        const char *message;
    
       public:
        explicit NoSuchMappingException(const char *msg) : message(msg) {}
    
        const char *what() const noexcept override { return message; }
      };
    
      RBTreeMap() noexcept = default;
    
      ~RBTreeMap() noexcept {
        // Unlinking circular references to avoid memory leak
        this->clear();
      }
    
      /**
       * Returns the number of entries in this map.
       * @return size_t
       */
      inline USize size() const noexcept { return this->count; }
    
      /**
       * Returns true if this collection contains no elements.
       * @return bool
       */
      inline bool empty() const noexcept { return this->count == 0; }
    
      /**
       * Removes all of the elements from this map.
       */
      void clear() noexcept {
        // Unlinking circular references to avoid memory leak
        if (this->root != nullptr) {
          this->root->release();
          this->root = nullptr;
        }
        this->count = 0;
      }
    
      /**
       * Returns the value to which the specified key is mapped; If this map
       * contains no mapping for the key, a {@code NoSuchMappingException} will
       * be thrown.
       * @param key
       * @return RBTreeMap<Key, Value>::Value
       * @throws NoSuchMappingException
       */
      Value get(K key) const {
        if (this->root == nullptr) {
          throw NoSuchMappingException("Invalid key");
        } else {
          NodePtr node = this->getNode(this->root, key);
          if (node != nullptr) {
            return node->value;
          } else {
            throw NoSuchMappingException("Invalid key");
          }
        }
      }
    
      /**
       * Returns the value to which the specified key is mapped; If this map
       * contains no mapping for the key, a new mapping with a default value
       * will be inserted.
       * @param key
       * @return RBTreeMap<Key, Value>::Value &
       */
      Value &getOrDefault(K key) {
        if (this->root == nullptr) {
          this->root = Node::from(key);
          this->root->color = Node::BLACK;
          this->count += 1;
          return this->root->value;
        } else {
          return this
              ->getNodeOrProvide(this->root, key,
                                 [&key]() { return Node::from(key); })
              ->value;
        }
      }
    
      /**
       * Returns true if this map contains a mapping for the specified key.
       * @param key
       * @return bool
       */
      bool contains(K key) const {
        return this->getNode(this->root, key) != nullptr;
      }
    
      /**
       * Associates the specified value with the specified key in this map.
       * @param key
       * @param value
       */
      void insert(K key, V value) {
        if (this->root == nullptr) {
          this->root = Node::from(key, value);
          this->root->color = Node::BLACK;
          this->count += 1;
        } else {
          this->insert(this->root, key, value);
        }
      }
    
      /**
       * If the specified key is not already associated with a value, associates
       * it with the given value and returns true, else returns false.
       * @param key
       * @param value
       * @return bool
       */
      bool insertIfAbsent(K key, V value) {
        USize sizeBeforeInsertion = this->size();
        if (this->root == nullptr) {
          this->root = Node::from(key, value);
          this->root->color = Node::BLACK;
          this->count += 1;
        } else {
          this->insert(this->root, key, value, false);
        }
        return this->size() > sizeBeforeInsertion;
      }
    
      /**
       * If the specified key is not already associated with a value, associates
       * it with the given value and returns the value, else returns the associated
       * value.
       * @param key
       * @param value
       * @return RBTreeMap<Key, Value>::Value &
       */
      Value &getOrInsert(K key, V value) {
        if (this->root == nullptr) {
          this->root = Node::from(key, value);
          this->root->color = Node::BLACK;
          this->count += 1;
          return root->value;
        } else {
          NodePtr node = getNodeOrProvide(this->root, key,
                                          [&]() { return Node::from(key, value); });
          return node->value;
        }
      }
    
      Value operator[](K key) const { return this->get(key); }
    
      Value &operator[](K key) { return this->getOrDefault(key); }
    
      /**
       * Removes the mapping for a key from this map if it is present;
       * Returns true if the mapping is present else returns false
       * @param key the key of the mapping
       * @return bool
       */
      bool remove(K key) {
        if (this->root == nullptr) {
          return false;
        } else {
          return this->remove(this->root, key, [](ConstNodePtr) {});
        }
      }
    
      /**
       * Removes the mapping for a key from this map if it is present and returns
       * the value which is mapped to the key; If this map contains no mapping for
       * the key, a {@code NoSuchMappingException} will be thrown.
       * @param key
       * @return RBTreeMap<Key, Value>::Value
       * @throws NoSuchMappingException
       */
      Value getAndRemove(K key) {
        Value result;
        NodeConsumer action = [&](ConstNodePtr node) { result = node->value; };
    
        if (root == nullptr) {
          throw NoSuchMappingException("Invalid key");
        } else {
          if (remove(this->root, key, action)) {
            return result;
          } else {
            throw NoSuchMappingException("Invalid key");
          }
        }
      }
    
      /**
       * Gets the entry corresponding to the specified key; if no such entry
       * exists, returns the entry for the least key greater than the specified
       * key; if no such entry exists (i.e., the greatest key in the Tree is less
       * than the specified key), a {@code NoSuchMappingException} will be thrown.
       * @param key
       * @return RBTreeMap<Key, Value>::Entry
       * @throws NoSuchMappingException
       */
      Entry getCeilingEntry(K key) const {
        if (this->root == nullptr) {
          throw NoSuchMappingException("No ceiling entry in this map");
        }
    
        NodePtr node = this->root;
    
        while (node != nullptr) {
          if (key == node->key) {
            return node->entry();
          }
    
          if (compare(key, node->key)) {
            /* key < node->key */
            if (node->left != nullptr) {
              node = node->left;
            } else {
              return node->entry();
            }
          } else {
            /* key > node->key */
            if (node->right != nullptr) {
              node = node->right;
            } else {
              while (node->direction() == Direction::RIGHT) {
                if (node != nullptr) {
                  node = node->parent;
                } else {
                  throw NoSuchMappingException(
                      "No ceiling entry exists in this map");
                }
              }
              if (node->parent == nullptr) {
                throw NoSuchMappingException("No ceiling entry exists in this map");
              }
              return node->parent->entry();
            }
          }
        }
    
        throw NoSuchMappingException("No ceiling entry in this map");
      }
    
      /**
       * Gets the entry corresponding to the specified key; if no such entry exists,
       * returns the entry for the greatest key less than the specified key;
       * if no such entry exists, a {@code NoSuchMappingException} will be thrown.
       * @param key
       * @return RBTreeMap<Key, Value>::Entry
       * @throws NoSuchMappingException
       */
      Entry getFloorEntry(K key) const {
        if (this->root == nullptr) {
          throw NoSuchMappingException("No floor entry exists in this map");
        }
    
        NodePtr node = this->root;
    
        while (node != nullptr) {
          if (key == node->key) {
            return node->entry();
          }
    
          if (compare(key, node->key)) {
            /* key < node->key */
            if (node->left != nullptr) {
              node = node->left;
            } else {
              while (node->direction() == Direction::LEFT) {
                if (node != nullptr) {
                  node = node->parent;
                } else {
                  throw NoSuchMappingException("No floor entry exists in this map");
                }
              }
              if (node->parent == nullptr) {
                throw NoSuchMappingException("No floor entry exists in this map");
              }
              return node->parent->entry();
            }
          } else {
            /* key > node->key */
            if (node->right != nullptr) {
              node = node->right;
            } else {
              return node->entry();
            }
          }
        }
    
        throw NoSuchMappingException("No floor entry exists in this map");
      }
    
      /**
       * Gets the entry for the least key greater than the specified
       * key; if no such entry exists, returns the entry for the least
       * key greater than the specified key; if no such entry exists,
       * a {@code NoSuchMappingException} will be thrown.
       * @param key
       * @return RBTreeMap<Key, Value>::Entry
       * @throws NoSuchMappingException
       */
      Entry getHigherEntry(K key) {
        if (this->root == nullptr) {
          throw NoSuchMappingException("No higher entry exists in this map");
        }
    
        NodePtr node = this->root;
    
        while (node != nullptr) {
          if (compare(key, node->key)) {
            /* key < node->key */
            if (node->left != nullptr) {
              node = node->left;
            } else {
              return node->entry();
            }
          } else {
            /* key >= node->key */
            if (node->right != nullptr) {
              node = node->right;
            } else {
              while (node->direction() == Direction::RIGHT) {
                if (node != nullptr) {
                  node = node->parent;
                } else {
                  throw NoSuchMappingException(
                      "No higher entry exists in this map");
                }
              }
              if (node->parent == nullptr) {
                throw NoSuchMappingException("No higher entry exists in this map");
              }
              return node->parent->entry();
            }
          }
        }
    
        throw NoSuchMappingException("No higher entry exists in this map");
      }
    
      /**
       * Returns the entry for the greatest key less than the specified key; if
       * no such entry exists (i.e., the least key in the Tree is greater than
       * the specified key), a {@code NoSuchMappingException} will be thrown.
       * @param key
       * @return RBTreeMap<Key, Value>::Entry
       * @throws NoSuchMappingException
       */
      Entry getLowerEntry(K key) const {
        if (this->root == nullptr) {
          throw NoSuchMappingException("No lower entry exists in this map");
        }
    
        NodePtr node = this->root;
    
        while (node != nullptr) {
          if (compare(key, node->key) || key == node->key) {
            /* key <= node->key */
            if (node->left != nullptr) {
              node = node->left;
            } else {
              while (node->direction() == Direction::LEFT) {
                if (node != nullptr) {
                  node = node->parent;
                } else {
                  throw NoSuchMappingException("No lower entry exists in this map");
                }
              }
              if (node->parent == nullptr) {
                throw NoSuchMappingException("No lower entry exists in this map");
              }
              return node->parent->entry();
            }
          } else {
            /* key > node->key */
            if (node->right != nullptr) {
              node = node->right;
            } else {
              return node->entry();
            }
          }
        }
    
        throw NoSuchMappingException("No lower entry exists in this map");
      }
    
      /**
       * Remove all entries that satisfy the filter condition.
       * @param filter
       */
      void removeAll(KeyValueFilter filter) {
        std::vector<Key> keys;
        this->inorderTraversal([&](ConstNodePtr node) {
          if (filter(node->key, node->value)) {
            keys.push_back(node->key);
          }
        });
        for (const Key &key : keys) {
          this->remove(key);
        }
      }
    
      /**
       * Performs the given action for each key and value entry in this map.
       * The value is immutable for the action.
       * @param action
       */
      void forEach(KeyValueConsumer action) const {
        this->inorderTraversal(
            [&](ConstNodePtr node) { action(node->key, node->value); });
      }
    
      /**
       * Performs the given action for each key and value entry in this map.
       * The value is mutable for the action.
       * @param action
       */
      void forEachMut(MutKeyValueConsumer action) {
        this->inorderTraversal(
            [&](ConstNodePtr node) { action(node->key, node->value); });
      }
    
      /**
       * Returns a list containing all of the entries in this map.
       * @return RBTreeMap<Key, Value>::EntryList
       */
      EntryList toEntryList() const {
        EntryList entryList;
        this->inorderTraversal(
            [&](ConstNodePtr node) { entryList.push_back(node->entry()); });
        return entryList;
      }
    
     private:
      static void maintainRelationship(ConstNodePtr node) {
        if (node->left != nullptr) {
          node->left->parent = node;
        }
        if (node->right != nullptr) {
          node->right->parent = node;
        }
      }
    
      static void swapNode(NodePtr &lhs, NodePtr &rhs) {
        std::swap(lhs->key, rhs->key);
        std::swap(lhs->value, rhs->value);
        std::swap(lhs, rhs);
      }
    
      void rotateLeft(ConstNodePtr node) {
        // clang-format off
        //     |                       |
        //     N                       S
        //    / \     l-rotate(N)     / \
        //   L   S    ==========>    N   R
        //      / \                 / \
        //     M   R               L   M
        assert(node != nullptr && node->right != nullptr);
        // clang-format on
        NodePtr parent = node->parent;
        Direction direction = node->direction();
    
        NodePtr successor = node->right;
        node->right = successor->left;
        successor->left = node;
    
        maintainRelationship(node);
        maintainRelationship(successor);
    
        switch (direction) {
          case Direction::ROOT:
            this->root = successor;
            break;
          case Direction::LEFT:
            parent->left = successor;
            break;
          case Direction::RIGHT:
            parent->right = successor;
            break;
        }
    
        successor->parent = parent;
      }
    
      void rotateRight(ConstNodePtr node) {
        // clang-format off
        //       |                   |
        //       N                   S
        //      / \   r-rotate(N)   / \
        //     S   R  ==========>  L   N
        //    / \                     / \
        //   L   M                   M   R
        assert(node != nullptr && node->left != nullptr);
        // clang-format on
    
        NodePtr parent = node->parent;
        Direction direction = node->direction();
    
        NodePtr successor = node->left;
        node->left = successor->right;
        successor->right = node;
    
        maintainRelationship(node);
        maintainRelationship(successor);
    
        switch (direction) {
          case Direction::ROOT:
            this->root = successor;
            break;
          case Direction::LEFT:
            parent->left = successor;
            break;
          case Direction::RIGHT:
            parent->right = successor;
            break;
        }
    
        successor->parent = parent;
      }
    
      inline void rotateSameDirection(ConstNodePtr node, Direction direction) {
        assert(direction != Direction::ROOT);
        if (direction == Direction::LEFT) {
          rotateLeft(node);
        } else {
          rotateRight(node);
        }
      }
    
      inline void rotateOppositeDirection(ConstNodePtr node, Direction direction) {
        assert(direction != Direction::ROOT);
        if (direction == Direction::LEFT) {
          rotateRight(node);
        } else {
          rotateLeft(node);
        }
      }
    
      void maintainAfterInsert(NodePtr node) {
        assert(node != nullptr);
    
        if (node->isRoot()) {
          // Case 1: Current node is root (RED)
          //  No need to fix.
          assert(node->isRed());
          return;
        }
    
        if (node->parent->isBlack()) {
          // Case 2: Parent is BLACK
          //  No need to fix.
          return;
        }
    
        if (node->parent->isRoot()) {
          // clang-format off
          // Case 3: Parent is root and is RED
          //   Paint parent to BLACK.
          //    <P>         [P]
          //     |   ====>   |
          //    <N>         <N>
          //   p.s.
          //    `<X>` is a RED node;
          //    `[X]` is a BLACK node (or NIL);
          //    `{X}` is either a RED node or a BLACK node;
          // clang-format on
          assert(node->parent->isRed());
          node->parent->color = Node::BLACK;
          return;
        }
    
        if (node->hasUncle() && node->uncle()->isRed()) {
          // clang-format off
          // Case 4: Both parent and uncle are RED
          //   Paint parent and uncle to BLACK;
          //   Paint grandparent to RED.
          //        [G]             <G>
          //        / \             / \
          //      <P> <U>  ====>  [P] [U]
          //      /               /
          //    <N>             <N>
          // clang-format on
          assert(node->parent->isRed());
          node->parent->color = Node::BLACK;
          node->uncle()->color = Node::BLACK;
          node->grandParent()->color = Node::RED;
          maintainAfterInsert(node->grandParent());
          return;
        }
    
        if (!node->hasUncle() || node->uncle()->isBlack()) {
          // Case 5 & 6: Parent is RED and Uncle is BLACK
          //   p.s. NIL nodes are also considered BLACK
          assert(!node->isRoot());
    
          if (node->direction() != node->parent->direction()) {
            // clang-format off
            // Case 5: Current node is the opposite direction as parent
            //   Step 1. If node is a LEFT child, perform l-rotate to parent;
            //           If node is a RIGHT child, perform r-rotate to parent.
            //   Step 2. Goto Case 6.
            //      [G]                 [G]
            //      / \    rotate(P)    / \
            //    <P> [U]  ========>  <N> [U]
            //      \                 /
            //      <N>             <P>
            // clang-format on
    
            // Step 1: Rotation
            NodePtr parent = node->parent;
            if (node->direction() == Direction::LEFT) {
              rotateRight(node->parent);
            } else /* node->direction() == Direction::RIGHT */ {
              rotateLeft(node->parent);
            }
            node = parent;
            // Step 2: vvv
          }
    
          // clang-format off
          // Case 6: Current node is the same direction as parent
          //   Step 1. If node is a LEFT child, perform r-rotate to grandparent;
          //           If node is a RIGHT child, perform l-rotate to grandparent.
          //   Step 2. Paint parent (before rotate) to BLACK;
          //           Paint grandparent (before rotate) to RED.
          //        [G]                 <P>               [P]
          //        / \    rotate(G)    / \    repaint    / \
          //      <P> [U]  ========>  <N> [G]  ======>  <N> <G>
          //      /                         \                 \
          //    <N>                         [U]               [U]
          // clang-format on
    
          assert(node->grandParent() != nullptr);
    
          // Step 1
          if (node->parent->direction() == Direction::LEFT) {
            rotateRight(node->grandParent());
          } else {
            rotateLeft(node->grandParent());
          }
    
          // Step 2
          node->parent->color = Node::BLACK;
          node->sibling()->color = Node::RED;
    
          return;
        }
      }
    
      NodePtr getNodeOrProvide(NodePtr &node, K key, NodeProvider provide) {
        assert(node != nullptr);
    
        if (key == node->key) {
          return node;
        }
    
        assert(key != node->key);
    
        NodePtr result;
    
        if (compare(key, node->key)) {
          /* key < node->key */
          if (node->left == nullptr) {
            result = node->left = provide();
            node->left->parent = node;
            maintainAfterInsert(node->left);
            this->count += 1;
          } else {
            result = getNodeOrProvide(node->left, key, provide);
          }
        } else {
          /* key > node->key */
          if (node->right == nullptr) {
            result = node->right = provide();
            node->right->parent = node;
            maintainAfterInsert(node->right);
            this->count += 1;
          } else {
            result = getNodeOrProvide(node->right, key, provide);
          }
        }
    
        return result;
      }
    
      NodePtr getNode(ConstNodePtr node, K key) const {
        assert(node != nullptr);
    
        if (key == node->key) {
          return node;
        }
    
        if (compare(key, node->key)) {
          /* key < node->key */
          return node->left == nullptr ? nullptr : getNode(node->left, key);
        } else {
          /* key > node->key */
          return node->right == nullptr ? nullptr : getNode(node->right, key);
        }
      }
    
      void insert(NodePtr &node, K key, V value, bool replace = true) {
        assert(node != nullptr);
    
        if (key == node->key) {
          if (replace) {
            node->value = value;
          }
          return;
        }
    
        assert(key != node->key);
    
        if (compare(key, node->key)) {
          /* key < node->key */
          if (node->left == nullptr) {
            node->left = Node::from(key, value);
            node->left->parent = node;
            maintainAfterInsert(node->left);
            this->count += 1;
          } else {
            insert(node->left, key, value, replace);
          }
        } else {
          /* key > node->key */
          if (node->right == nullptr) {
            node->right = Node::from(key, value);
            node->right->parent = node;
            maintainAfterInsert(node->right);
            this->count += 1;
          } else {
            insert(node->right, key, value, replace);
          }
        }
      }
    
      void maintainAfterRemove(ConstNodePtr node) {
        if (node->isRoot()) {
          return;
        }
    
        assert(node->isBlack() && node->hasSibling());
    
        Direction direction = node->direction();
    
        NodePtr sibling = node->sibling();
        if (sibling->isRed()) {
          // clang-format off
          // Case 1: Sibling is RED, parent and nephews must be BLACK
          //   Step 1. If N is a left child, left rotate P;
          //           If N is a right child, right rotate P.
          //   Step 2. Paint S to BLACK, P to RED
          //   Step 3. Goto Case 2, 3, 4, 5
          //      [P]                   <S>               [S]
          //      / \    l-rotate(P)    / \    repaint    / \
          //    [N] <S>  ==========>  [P] [D]  ======>  <P> [D]
          //        / \               / \               / \
          //      [C] [D]           [N] [C]           [N] [C]
          // clang-format on
          ConstNodePtr parent = node->parent;
          assert(parent != nullptr && parent->isBlack());
          assert(sibling->left != nullptr && sibling->left->isBlack());
          assert(sibling->right != nullptr && sibling->right->isBlack());
          // Step 1
          rotateSameDirection(node->parent, direction);
          // Step 2
          sibling->color = Node::BLACK;
          parent->color = Node::RED;
          // Update sibling after rotation
          sibling = node->sibling();
          // Step 3: vvv
        }
    
        NodePtr closeNephew =
            direction == Direction::LEFT ? sibling->left : sibling->right;
        NodePtr distantNephew =
            direction == Direction::LEFT ? sibling->right : sibling->left;
    
        bool closeNephewIsBlack = closeNephew == nullptr || closeNephew->isBlack();
        bool distantNephewIsBlack =
            distantNephew == nullptr || distantNephew->isBlack();
    
        assert(sibling->isBlack());
    
        if (closeNephewIsBlack && distantNephewIsBlack) {
          if (node->parent->isRed()) {
            // clang-format off
            // Case 2: Sibling and nephews are BLACK, parent is RED
            //   Swap the color of P and S
            //      <P>             [P]
            //      / \             / \
            //    [N] [S]  ====>  [N] <S>
            //        / \             / \
            //      [C] [D]         [C] [D]
            // clang-format on
            sibling->color = Node::RED;
            node->parent->color = Node::BLACK;
            return;
          } else {
            // clang-format off
            // Case 3: Sibling, parent and nephews are all black
            //   Step 1. Paint S to RED
            //   Step 2. Recursively maintain P
            //      [P]             [P]
            //      / \             / \
            //    [N] [S]  ====>  [N] <S>
            //        / \             / \
            //      [C] [D]         [C] [D]
            // clang-format on
            sibling->color = Node::RED;
            maintainAfterRemove(node->parent);
            return;
          }
        } else {
          if (closeNephew != nullptr && closeNephew->isRed()) {
            // clang-format off
            // Case 4: Sibling is BLACK, close nephew is RED,
            //         distant nephew is BLACK
            //   Step 1. If N is a left child, right rotate P;
            //           If N is a right child, left rotate P.
            //   Step 2. Swap the color of close nephew and sibling
            //   Step 3. Goto case 5
            //                            {P}                {P}
            //      {P}                   / \                / \
            //      / \    r-rotate(S)  [N] <C>   repaint  [N] [C]
            //    [N] [S]  ==========>        \   ======>        \
            //        / \                     [S]                <S>
            //      <C> [D]                     \                  \
            //                                  [D]                [D]
            // clang-format on
    
            // Step 1
            rotateOppositeDirection(sibling, direction);
            // Step 2
            closeNephew->color = Node::BLACK;
            sibling->color = Node::RED;
            // Update sibling and nephews after rotation
            sibling = node->sibling();
            closeNephew =
                direction == Direction::LEFT ? sibling->left : sibling->right;
            distantNephew =
                direction == Direction::LEFT ? sibling->right : sibling->left;
            // Step 3: vvv
          }
    
          // clang-format off
          // Case 5: Sibling is BLACK, close nephew is BLACK,
          //         distant nephew is RED
          //      {P}                   [S]
          //      / \    l-rotate(P)    / \
          //    [N] [S]  ==========>  {P} <D>
          //        / \               / \
          //      [C] <D>           [N] [C]
          // clang-format on
          assert(closeNephew == nullptr || closeNephew->isBlack());
          assert(distantNephew->isRed());
          // Step 1
          rotateSameDirection(node->parent, direction);
          // Step 2
          sibling->color = node->parent->color;
          node->parent->color = Node::BLACK;
          if (distantNephew != nullptr) {
            distantNephew->color = Node::BLACK;
          }
          return;
        }
      }
    
      bool remove(NodePtr node, K key, NodeConsumer action) {
        assert(node != nullptr);
    
        if (key != node->key) {
          if (compare(key, node->key)) {
            /* key < node->key */
            NodePtr &left = node->left;
            if (left != nullptr && remove(left, key, action)) {
              maintainRelationship(node);
              return true;
            } else {
              return false;
            }
          } else {
            /* key > node->key */
            NodePtr &right = node->right;
            if (right != nullptr && remove(right, key, action)) {
              maintainRelationship(node);
              return true;
            } else {
              return false;
            }
          }
        }
    
        assert(key == node->key);
        action(node);
    
        if (this->size() == 1) {
          // Current node is the only node of the tree
          this->clear();
          return true;
        }
    
        if (node->left != nullptr && node->right != nullptr) {
          // clang-format off
          // Case 1: If the node is strictly internal
          //   Step 1. Find the successor S with the smallest key
          //           and its parent P on the right subtree.
          //   Step 2. Swap the data (key and value) of S and N,
          //           S is the node that will be deleted in place of N.
          //   Step 3. N = S, goto Case 2, 3
          //     |                    |
          //     N                    S
          //    / \                  / \
          //   L  ..   swap(N, S)   L  ..
          //       |   =========>       |
          //       P                    P
          //      / \                  / \
          //     S  ..                N  ..
          // clang-format on
    
          // Step 1
          NodePtr successor = node->right;
          NodePtr parent = node;
          while (successor->left != nullptr) {
            parent = successor;
            successor = parent->left;
          }
          // Step 2
          swapNode(node, successor);
          maintainRelationship(parent);
          // Step 3: vvv
        }
    
        if (node->isLeaf()) {
          // Current node must not be the root
          assert(node->parent != nullptr);
    
          // Case 2: Current node is a leaf
          //   Step 1. Unlink and remove it.
          //   Step 2. If N is BLACK, maintain N;
          //           If N is RED, do nothing.
    
          // The maintain operation won't change the node itself,
          //  so we can perform maintain operation before unlink the node.
          if (node->isBlack()) {
            maintainAfterRemove(node);
          }
          if (node->direction() == Direction::LEFT) {
            node->parent->left = nullptr;
          } else /* node->direction() == Direction::RIGHT */ {
            node->parent->right = nullptr;
          }
        } else /* !node->isLeaf() */ {
          assert(node->left == nullptr || node->right == nullptr);
          // Case 3: Current node has a single left or right child
          //   Step 1. Replace N with its child
          //   Step 2. If N is BLACK, maintain N
          NodePtr parent = node->parent;
          NodePtr replacement = (node->left != nullptr ? node->left : node->right);
          switch (node->direction()) {
            case Direction::ROOT:
              this->root = replacement;
              break;
            case Direction::LEFT:
              parent->left = replacement;
              break;
            case Direction::RIGHT:
              parent->right = replacement;
              break;
          }
    
          if (!node->isRoot()) {
            replacement->parent = parent;
          }
    
          if (node->isBlack()) {
            if (replacement->isRed()) {
              replacement->color = Node::BLACK;
            } else {
              maintainAfterRemove(replacement);
            }
          }
        }
    
        this->count -= 1;
        return true;
      }
    
      void inorderTraversal(NodeConsumer action) const {
        if (this->root == nullptr) {
          return;
        }
    
        std::stack<NodePtr> stack;
        NodePtr node = this->root;
    
        while (node != nullptr || !stack.empty()) {
          while (node != nullptr) {
            stack.push(node);
            node = node->left;
          }
          if (!stack.empty()) {
            node = stack.top();
            stack.pop();
            action(node);
            node = node->right;
          }
        }
      }
    };
    
    #endif  // RBTREE_MAP_HPP
    

    其他资料